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A B S T R A C T   

Quantifying the number of recreational fishers is important for many aspects of managing coastal resources. 
Unfortunately, quantifying recreational boaters in offshore settings has proven difficult due to their distance from 
shore and a lack of cost-effective methods to monitor small boats (<10 m length). We investigated visitor-use at 
an offshore marine protected area (MPA) in the southeastern USA. We used multiple methods of counting boats 
(satellites, buoy camera, passive acoustics, and boat-based observations) and a generalized linear modeling 
approach to identify environmental and calendar-based predictor variables that influenced visitation. Based on 
the model, predicted visitor-encounter rates were estimated for various weather and calendar-based scenarios, 
and the probability of detecting a hypothetical change in visitation with each counting method was examined 
through a power analysis. The most important predictors were day of the week, special day (e.g., tournament), 
water temperature, and wave height. Boat counts were 2–5 times higher on weekend days than on weekdays. 
More boats were predicted on weekdays with good weather (defined as water temperature 24 ◦C, wave height 
0.5 m), than weekends with decent weather (17 ◦C and 1 m). Considering weekends alone, those with good 
weather were predicted to have 5 times higher visitation than weekends with decent weather. Predicted visi-
tation was highest on calm days, dropped by ~75 % when wave height reached 1 m, and was essentially zero 
when wave height exceeded 1.5 m. Highest counts were predicted when water temperature was warmest and 
gradually declined as temperatures cooled. For the buoy camera and passive acoustic boat-count methods, power 
analysis suggested that 3–6 years of typical samples before and after a hypothetical 25 % increase in visitation 
would be needed to have an 80 % chance of detecting the change. Other techniques would take 14 or more years 
of typical samples. The process used here for investigating visitation can be adapted to other offshore or remote 
locations.   

1. Introduction 

Coastal managers often seek to quantify the number of recreational 
boaters visiting offshore destinations. This information is important for 
managing sustainable fisheries, optimizing regulations for visitors, and 
minimizing conflicts among users (McCluskey and Lewison, 2008; Par-
nell et al., 2010; Brownscombe et al., 2019; Shertzer et al., 2019). Un-
fortunately, counting small boats (<10 m) in offshore settings has 

proven challenging. Several methods have been implemented, each with 
their own limitations. Approaches such as shore-mounted camera sys-
tems (Keller et al., 2016; Lancaster et al., 2017; Askey et al., 2018; Flynn 
et al., 2018; Hartill et al., 2020) and boat ramp surveys (Parnell et al., 
2010; Hartill et al., 2016; Lynch et al., 2020) that have worked closer to 
shore are less effective when boaters leave shore from diffuse access 
points and venture beyond the horizon. Observer boats or aircraft can be 
dispatched offshore to conduct surveys (Fraidenburg and Bargmann, 
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1982; Cabanellas-Reboredo et al., 2014; Askey et al., 2018) but such 
monitoring can be expensive and infrequent, especially on weekends 
and holidays when recreational activities primarily take place. New 
approaches have also been developed including use of satellite imagery 
provided that resolution is high enough to distinguish small boats, 
acquisition is frequent enough for adequate monitoring, time of the day 
that imagery occurs allows useful inference, and clouds do not interfere 
(Corbane et al., 2008; Bruno et al., 2011). Hydrophones (passive 
acoustics) that record boat sounds have also been used for assessing 
visitation (Bruno et al., 2011; Simard et al., 2016). These have the 
desirable advantage of continuous monitoring but have limited and 
variable detection range and it can be difficult to interpret individual 
visitor events and behaviors from sound alone (Kline et al., 2020). 
Buoy-mounted camera systems are used in some locations, but also have 
limited range (Kendall et al., 2020). Questionnaires and mobile apps are 
useful, but depend upon the memory, honesty, and positional awareness 
of respondents (Venturelli et al., 2017; Bova et al., 2018). Each of these 
techniques can assess aspects of offshore visitation, but none are able to 
provide universal coverage at all times, over broad areas, and in all 
environmental conditions. 

Due to the challenges in quantifying boat activity comprehensively 
in remote locations, predictive modeling has been used to understand 
patterns of visitor-use, the variables associated with those patterns, and 
to identify which methods of counting boats are most informative (van 
Poorten et al., 2015; Lancaster et al., 2017; Askey et al., 2018). Two 
primary data types are needed to create models of visitation: sample 
data (i.e., boat counts) and predictor data. Boat-count data can come 
from the sources mentioned above, and it is often recommended that 
multiple approaches be used and compared since no single dataset can 
typically provide unbiased estimates of visitor use (McCluskey and 
Lewison, 2008; Hartill et al., 2016; Lynch et al., 2020). Predictor data 
encompass a diversity of variables that can directly or indirectly affect 
the choice to go fishing. This may include weather conditions (Frai-
denberg and Bargmann, 1982; Parnell et al., 2010; Cabanellas-Reboredo 
et al., 2014; Lynch et al., 2020), day of the week (Sunger et al., 2012; van 
Poorten et al., 2015; Askey et al., 2018), month/season (Bird et al., 
2001; Keller et al., 2016; Askey et al., 2018), and special dates such as 
holidays, fishery seasons, or tournaments (Bird et al., 2001; Parnell 
et al., 2010; Flynn et al., 2018; Lynch et al., 2020). By understanding the 
relationship between the observed boat-count data and these variables, 
patterns of visitation can be predicted for times lacking boat observa-
tions based on their predictor values. 

In this study we investigated visitor-use at Gray’s Reef National 
Marine Sanctuary (GRNMS), an offshore marine protected area (MPA) in 
the southeastern USA. The factors contributing to the challenge of 
counting visitors to GRNMS are common to many offshore areas and 
principally include its long distance from shore and the small boats 
typically used for accessing it. We used generalized linear models to 
address four main questions. First, what environmental (e.g., wind 
speed, seasonal water temperature) and calendar-based variables (e.g., 
weekend, holiday) are important for predicting boat counts at Gray’s 
Reef? Second, what are the relationships between boat counts and those 
variables? Third, what are predicted visitor-encounter rates under 
various environmental and calendar-based scenarios that could be used 
to inform coastal managers and improve the efficiency of their moni-
toring plans? Last, which of four different methods of counting boats (i. 
e., satellites, buoy camera, passive acoustics, or boat-based observa-
tions) are most precise and powerful for detecting changes in visitor use? 

2. Methods 

2.1. Study site 

The continental shelf in the Atlantic Ocean off the coast of Georgia, 
USA is primarily covered with sand that gradually slopes deeper to the 
shelf edge 120 km offshore. The seabed on this broad shelf is punctuated 

by a number of rocky outcrops and artificial reefs that attract a diversity 
of fish species that are commonly targeted by recreational anglers in 
small boats (Riggs et al., 1996; Shertzer et al., 2019). These include not 
only bottom dwelling species such as black sea bass (Centropristis striata), 
red snapper (Lutjanus campechanus), and grouper species (e.g., Gag- 
Mycteroperca microlepis), but also pelagic fishes such as king mackerel 
(Scomberomorus cavalla) (Bird et al., 2001; Kendall et al., 2008, 2009; 
Williams et al., 2019). Gray’s Reef is one of these naturally occurring 
rocky habitats (NOAA, 1980; Kendall et al., 2005). Located 30 km 
offshore at a depth of ~20 m, the 57 km2 area consists of a cluster of 
limestone ledges and overhangs that have attracted recreational anglers 
for decades (Fig. 1). 

Visitors to GRNMS depart shore from marinas, boat ramps, and 
private docks in the many rivers and inlets along the Georgia coast. 
Although the dominant user group is known to be recreational anglers, 
the number of boats and temporal aspects of visitation such as relative 
intensity of fishing activities among seasons and days of the week (e.g., 
weekend versus weekdays, holidays) as well as different environmental 
conditions (e.g., waves, precipitation) remain poorly understood 
(NOAA, 2014; Kendall et al., 2020). This lack of count data about visi-
tors to the sanctuary has persisted since the sanctuary was designated 
nearly four decades ago. 

Four approaches have been used to count boats at GRNMS in recent 
years (Kendall et al., 2020). On- water observations of visiting boats are 
conducted by sanctuary staff from small research vessels (GRNMS R/V) 
during their general field operations at the sanctuary and also from small 
patrol boats by Georgia Department of Natural Resources (GA DNR). 
Boat counts have also been conducted from available high-resolution 
(<1 m) satellite imagery collected around mid-day, every 4–5 days. A 
radial camera mounted to the data buoy has also been used which col-
lects images every two hours from 7:00 AM to 6:20 PM (local time). 
Lastly, daily numbers of visiting boats have been inferred based on 
continuous monitoring of underwater sounds by a hydrophone deployed 
on the seafloor at GRNMS. None of these methods represents complete 
daily counts of unique boats throughout the sanctuary for the entire 
year, and each method differed with respect to temporal and spatial 
coverage. For example, suitable satellites (i.e., WorldView 1–3) provide 
a single instantaneous snapshot every 4–5 days (revisit interval) of the 
entire sanctuary, the buoy camera photographs boats every two hours 
but only within sight of the data buoy (~2 km), and the hydrophone 
records boats continuously but they must pass within its detection range. 
Despite these differences, each technique can provide an estimate of the 
number of visiting boats on a daily timescale. Details on the differing 
methodologies, strengths, and weaknesses of each dataset are discussed 
by Kendall et al. (2020). In this study, we use all visitation records for 
small recreational boats from each of these methods for 2019 to create a 
predictive model. 

2.2. Statistical framework 

To evaluate the relationship between the number of boats observed 
at the sanctuary, weather conditions, and calendar-based predictors, we 
used generalized linear models (GLMs) with a negative binomial dis-
tribution. This statistical framework and distribution is appropriate for 
count data where the variance in the data is greater than the mean, as is 
the case here. Boat observations were summarized within each count 
method as the total number of boats observed on each day, which was 
used as the response variable. To account for potential differences in 
boat counts among datasets due to their various methodologies, a cat-
egorical predictor for count method was included in the model. 

An initial list of 27 potential predictors was compiled by consulting 
with sanctuary staff, local fisheries enforcement officers, and anglers 
(Appendix A). Predictor variables included environmental factors such 
as measured and forecasted wind speed and wave height, as well as 
calendar-based variables such as day of the week (e.g., Saturday) and 
special dates (e.g., fishing tournaments). Meteorological and 
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oceanographic conditions are measured hourly from the National Data 
Buoy Center’s (NDBC) 3 m disc buoy which is located within GRNMS 
(Station 41008, https://www.ndbc.noaa.gov/ accessed Jan 15, 2020). 
Measurements of potentially influential variables on visitor use 
including wind speed, wave height, water temperature, and direction of 
atmospheric pressure change were downloaded from the NDBC archive 
for every day in 2019. Data were evaluated from 6:00 and 11:00 AM 
local time (GMT -5). Six AM represents conditions at the time boaters 
may be considering going offshore and 11:00 AM corresponds to the 
peak time of day for most visitation (Kendall et al., 2020). 

Weather forecast data may also influence visitation and could 
correlate better than observed weather at the time that boats are 
counted. Boaters often check the forecast for offshore waters when 
planning a fishing excursion to ensure their comfort and safety and even 
to improve their chances for successful catch. Weather predictions from 
the NOAA National Weather Service’s Coastal Waters Forecast for 
GRNMS were downloaded from archive (https://mesonet.agron.iastate. 
edu/archive/ accessed Jan 15, 2020) for both the evening before and 
morning of the boat count observations since both times may influence 
angler decisions. Forecast variables included maximum wind speed, 
maximum wave height, chance of rain/showers, chance of thunder-
storms, and presence/absence of small craft advisories (a type of 

warning to boaters issued by the US National Weather Service when 
wind speed exceeds 40 km/h). 

Temporal variables, or more precisely, calendar-based variables 
were also included. These were days of the week (e.g., Monday, Satur-
day), weekday holidays plus their surrounding weekends (e.g., Labor 
Day Weekend), dates when fishing tournaments occurred in the vicinity 
of Gray’s Reef that have been historically associated with increased 
visitation, and dates of fishing seasons (i.e., red snapper) (Table 1). If a 
holiday fell in the middle of the week (i.e., Tuesday, Wednesday, 
Thursday), the following (or previous) weekend was not considered a 
holiday weekend. Dates with holidays, fishing tournaments, and fishing 
seasons were collectively categorized as “special” because of expected 
increased visitor use associated with those events. 

2.3. Important predictor variables 

The large list of 27 potential predictors was reduced prior to 
modeling. Some potential predictors were eliminated due to lack of 
variation in their values which rendered them unusable for predicting 
visitation. For example, precipitation forecast was eliminated because 
the value of this variable was nearly always ‘none predicted’. Similarly, 
atmospheric pressure change (i.e., rising or falling) was excluded due to 

Fig. 1. Study area location off the southeastern USA. The shelf edge is approximately at the 200 m isobath.  
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a highly consistent pattern of diel change that resulted in almost always 
rising pressure. 

Next, pairs of correlated variables were identified, and only one 
variable was kept from each pair. The inclusion of correlated predictors 
in a single model complicates inference about which of those predictors 
is important given their similar relationship with the response variable. 
A correlation coefficient >0.7 between predictors has been demon-
strated to substantially degrade model inference (Dormann et al., 2013). 
We chose a somewhat more conservative threshold (Pearson’s r > 0.6) 
for excluding pairs of correlated predictors in models (Booth et al., 
1994). This aspect of variable reduction was done in two phases; prior to 
model fitting and during model selection. First we evaluated pairs of 
variables that differed only in the time that they were collected. For 
example, all aspects of weather forecasts made the evening before and 
the morning of a boat count were compared and found to be nearly 
identical. Although both forecasts are likely consulted when planning a 
fishing excursion, only the morning forecasts were considered during 
model fitting because that is the final forecast available before venturing 
offshore. Similarly, measured weather conditions (e.g., wave height, 
wind speed, temperature) at 6:00 AM were very similar to their 11:00 
AM counterparts. For this analysis, only the 11:00 AM measurements 
were included during model fitting because they reflect the actual 
conditions at the sanctuary during visitor use. This process reduced the 
list of candidate predictor variables from 27 to 12. A few pairs of these 
remaining predictor variables were correlated (r > 0.6) but character-
ized different aspects of the environment (e.g., wind speed and wave 
height). We therefore used a model selection process to identify which of 
each pair best fit the data and which should be eliminated. 

To determine the most important predictors explaining the number 
of boats at GRNMS, a model including all remaining potential predictors 
was fit using the glm.nb() function in the MASS package (Venables and 
Ripley., 2002) in R Version 3.6.1 (R Core Team, 2019). All potential 
combinations of predictors were considered for the model using the 
dredge() function in the MuMIn package (Barton, 2020). Models 
including both of a pair of highly correlated predictors were ignored. 
The most parsimonious model without highly correlated predictors that 
best explained the number of boats was identified using the corrected 
Akaike Information Criterion (AICc). AICc was used instead of 
cross-validation because cross-validation was impractical with the small 
sample sizes for some datasets. AICc is a score for evaluating relative 
performance among multiple models that works by evaluating each 
model’s fit to the available data but adding a penalty for including too 
many predictors and overfitting the model. Overfitting results in a model 
that is only relevant to the data used to make it and does not perform 
well for making general predictions. The model with the lowest AICc 
score is the best at explaining the number of boats. Models with an AICc 
score within 2 of the lowest AICc score are similar in performance to the 
best model. When the AICc score is different by more than 2, models are 
considerably worse (Burnham and Anderson, 2002). For simplicity, only 

the best model (that with the lowest AICc score) was used for prediction. 
The predictors present in the best model were defined as the most 
important in explaining the number of boats. To measure how well 
models explained the number of boats, we used percent deviance 
explained (PDE) which expresses the percentage of variation in the 
observed boat counts that is explained by the model and is analogous to 
an R2 value in a regression. 

The relationship between important variables and the predicted 
number of boats in the best model were plotted (+/- 95 % CI) across the 
observed range of values for each predictor. To examine the effect of 
individual variables apart from the effect of the other predictors, all 
other numeric variables were held at their mean and categorical vari-
ables were set to their mode. 

2.4. Predicted boat counts 

The probability of different numbers of boats being detected at 
GRNMS across eight weather- and calendar-based scenarios were 
calculated based on the various counting techniques. This was done to 
inform the resource managers and organizations conducting the counts 
about predicted encounter rates such that they may improve the effi-
ciency of their monitoring plans. These scenarios were focused on dates 
and conditions that were likely to experience relatively high versus 
moderate visitor use (Fig. 2). Predictions were not created for scenarios 
unlikely to have many visitors (e.g., bad weather, Mondays). In order to 
make predictions, specific values for each predictor variable are 
required. Relevant parameters and their values for these scenarios were 
determined through discussion with local experts, observations in the 
field (Kendall et al., 2020), and by examining the observed values of the 
important predictors identified from the model fitting process. 

We began building scenarios based on the day of the week. One set of 
scenarios was created to represent popular days of the week for visita-
tion (i.e., Friday, Saturday, and Sunday) using Saturday for prediction, 
and another set of scenarios was created to represent less popular days 
(i.e., Wednesday or Thursday) using Thursday for prediction. We next 
added to these scenarios whether or not those days had ‘good’ (more 
visitors likely) or ‘decent’ (fewer visitors likely) weather conditions. The 
thresholds for ‘good’ and ‘decent’ weather were selected by identifying 
natural break points in scatter plots of observed numbers of boats across 

Table 1 
Dates defined as special days for 2019.  

Date Reason 

1/1 New Year’s Day 
1/19, 1/20, 1/21 Martin Luther King Weekend 
2/16, 2/17, 2/18 Washington’s Birthday Weekend 
5/25, 5/26, 5/27 Memorial Day Weekend 
6/14, 6/15 Two Way Sportfishing Club Kingfish Tournament 
7/4 Fourth of July 
7/12, 7/13 Sapelo Open Kingfish Tournament and red snapper season 
7/14 Last day of red snapper season 
8/15, 8/16, 8/17 Golden Isles King Mac Attack 
8/31, 9/1, 9/2 Labor Day Weekend 
10/12, 10/13, 10/14 Columbus Day Weekend 
11/9, 11/10, 11/11 Veteran’s Day Weekend 
11/28 Thanksgiving 
12/25 Christmas  

Fig. 2. Variable settings used in the eight boat-count prediction scenarios. Bold 
values denote the variable levels used to make predictions. 
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water temperature and wave height, which were identified as important 
weather variables in the model fitting step. Good weather days were 
defined as days with many boats observed and where water temperature 
was above 24 ◦C and wave height was below 0.5 m, therefore those 
values were used for predictions representing good weather conditions. 
Decent weather days with a moderate number of boats observed were 
defined as having a water temperature of 17− 24 ◦C and wave height of 
0.5− 1 m. Therefore, those variables were set at the threshold values of 
17 ◦C and 1 m, respectively, for predictions representing decent weather 
conditions. Lastly, we added to the scenarios whether or not it was a 
special day. This variable was binary and distinguished predictions 
occurring on tournament, holiday, and fishing season dates versus all 
other days. We considered all combinations on good and decent days of 
day of the week, weather conditions, and special day resulting in eight 
prediction scenarios (Fig. 2). 

The predicted number of boats that would be counted by each 
technique in a given scenario was simulated from the best model in two 
steps. First, the mean number of boats was simulated from a normal 
distribution with mean equal to the corresponding model predicted 
value and standard deviation equal to the corresponding standard error 
of the model prediction. These simulated numbers of boats reflected 
model uncertainty about the predicted mean number of boats, but they 
did not capture variation in actual boat count data. To account for 
variation in boat count data, a second simulation step was conducted 
where for each mean boat count from step 1, an actual boat count was 
generated from a negative binomial distribution with mean equal to the 
simulated mean boat count and dispersion equal to that estimated for 
the model. Simulations were repeated 100,000 times resulting in a 
distribution of possible boat counts based on each technique within each 
scenario. The probabilities of observing different numbers of boats were 
then derived from these distributions. 

In addition to predicting boats across these eight hypothetical sce-
narios, we estimated the total number of boats counted at GRNMS in a 
given year. Using the conditions of 2019 as an example year, we pre-
dicted the number of boats counted at GRNMS each day, given the 
weather conditions from actual data buoy measurements and weather 
forecasts, and summed these values through the year. 

2.5. Important boat count datasets 

We assessed the utility of each boat-count method for understanding 
visitation in three ways: 1) the ability to identify predictor variables that 
influenced visitation; 2) the precision of estimated mean counts; and 3) 
the statistical power to detect changes in visitation. These measures of 
usefulness are a function of sample size, mean number of boats counted, 
and the variation in boat counts for each boat-count method. 

To assess the ability of each boat-count method to identify predictor 
variables that influenced visitation we fit a model to each individual 
dataset (e.g., only passive acoustic data). We then compared the pre-
dictors identified as important in the best models (lowest AICc). Then, as 
a benchmark for comparison, we used the list of important predictors 
from the best overall model (i.e., from the previous section that was fit 
using all count methods simultaneously). The GRNMS R/V and GA DNR 
datasets were combined for this analysis because of their low number of 
samples, weekend (GA DNR) versus weekday (GRNMS R/V) sampling 
biases, and general similarity in method. 

To assess the precision of estimated mean counts for each boat-count 
method, we calculated the coefficients of variation (CV; standard error 
divided by the mean) of the estimated counts for each method. We then 
compared these values among datasets and to the CV from the best 
overall model that was fit to all datasets simultaneously. 

To assess the statistical power of each boat-count method to detect 
changes in visitation, we considered a realistic hypothetical situation in 
which visitation increased by 25 % due to some factor(s) other than the 
predictor variables considered in our analysis (e.g., coastal population 
growth). Statistical power essentially represents the probability of 

correctly detecting that visitation had increased. A power analysis was 
conducted using custom code in R Version 3.6.1 (R Core Team, 2019) for 
each boat-count method separately. 

The first step in the power analysis was to simulate samples of daily 
counts for different numbers of years before and after the hypothetical 
25 % increase in visitation. Simulated daily counts each year were based 
on the observed dates and number of samples for each boat-count 
method. Buoy camera and passive acoustic methods were assumed to 
sample every day (365 samples per year), a frequency that is possible 
when the equipment is deployed and maintained. The satellite method 
was assumed to sample every four days, consistent with the revisit fre-
quency of the satellites used here, beginning on a randomly chosen start 
date between January 1 and 4 (91 or 92 samples per year). Consistent 
with 2019, GA DNR was assumed to generate 18 counts per year on 
weekends (Friday-Sunday) and GRNMS R/V was assumed to generate 6 
counts per year on weekdays (Monday-Friday) with good or decent 
weather conditions (water temperature ≥17 ◦C and wave height ≤1 m). 
Simulated sampling dates for the on-water boat-count methods were 
selected randomly subject to their day-of-week and weather constraints. 
For each date, the mean count for a given method was calculated using 
the best overall model assuming the same conditions of that date in 
2019. Mean counts from years after the hypothetical increase in visita-
tion were increased by 25 %. Daily counts were randomly generated 
from a negative binomial distribution with the specified mean and 
dispersion equal to that of the best overall model. 

The second step in the power analysis was to test for a difference in 
mean visitation between the simulated daily counts before and after the 
25 % increase in visitation with a given number of years of samples. A 
simple negative binomial GLM was fit to each simulated set of data to 
determine if the estimated mean count after the increase was signifi-
cantly higher. Power was calculated as the proportion of 10,000 simu-
lated datasets for which an increase was estimated and its p-value was 
significant (alpha of 0.05). 

3. Results 

The modeling process included 593 observation days from 2019 
(Fig. 3). The passive acoustics dataset from the hydrophone provided the 
most observations (353) and covered almost the entire year. The camera 
mounted on the data buoy collected 187 sample days between June 
(camera deployed) and December (battery expiration). Satellite imagery 
was collected on 29 days between April and October. Data from 18 GA 
DNR patrols between January and November, and 6 on-water counts by 
GRNMS R/Vs collected from June to November, were included. 

3.1. Important predictor variables 

The best model with the lowest AICc score (AICc = 1001.1, PDE =
43.4) included the predictors boat-count method, day of the week, 
special day, water temperature, and measured wave height. Only one 
other model had an AICc score within 2 of the best model and therefore 
similarly explained boat counts (AICc = 1002.2, PDE = 43.3), and it 
included the same predictors as the best model, except it included air 
temperature instead of water temperature. For simplicity, all predictions 
were made using the model with the lowest AICc score. 

Count method was considered an important predictor, indicating 
that differing methodologies had an effect on the number of boats 
observed. Specifically, the number of boats counted by the buoy camera 
was much lower compared to the other datasets, while the number of 
boats counted from the GRNMS R/V was higher than other methods 
(Fig. 4a). Two calendar based predictors, day of the week and special 
day, were also important in explaining boats counted. The most boats 
were predicted on Saturdays, followed by Sundays and Fridays (Fig. 4b). 
Additionally, more boats were predicted on days considered special, 
such as holidays, tournament days, or during the red snapper season 
(Fig. 4c). Weather conditions including measured water temperature 
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and wave height, were also important predictors. As water temperature 
increased, the predicted number of boats counted increased (Fig. 4d). As 
wave height increased, the number of boats decreased (Fig. 4e). 

3.2. Predicted boat counts 

The mean number of boats expected to be counted using each 
method varied based on the different scenarios of good or decent 
weather, weekend or weekday, and special day status (Fig. 5). The 
highest mean boat counts were predicted on weekend/good weather/ 
special days. These were 27 times higher than predicted on weekdays 
with decent weather (Fig. 5). Considering weekends alone, the most 
popular days of visitation, those with good weather were predicted to 
have 5 times higher mean boat counts than weekends with only decent 
weather. Also of note, more boats were predicted on weekdays with 
good weather, than weekends with decent weather. 

It is important to recognize that these predictions are mean boat 
counts. The variability in actual counts on any particular visit is likely to 
be large, even on days with similar attributes. This is best appreciated by 
examining the histograms displaying the probability of occurrence of 

different numbers of boats for each count method and scenario (Fig. 6). 
The probability distributions of encountering boats sum to 1 (100 %) 

for each count method within each scenario (Fig. 6). Higher counts, 
above 8–11 boats per day, are seldom likely on anything other than a 
weekend with good weather in any technique (Fig. 6 a–b). The histo-
grams also highlight the variability in possible boat counts within each 
scenario and count method. Even on special weekend days with good 
weather, it is possible to encounter zero boats, although it is more likely 
that 1–7 boats will be observed depending on the method (Fig. 6a). Once 
weather conditions deteriorate from good to decent, all techniques are 
most likely to encounter zero boats on any day of the week (Fig. 6f-h) 
unless perhaps, it is a holiday weekend or tournament (Fig. 6e). 

Estimates of the total number of boats that would be observed by 
each count method based on the daily environmental conditions in 2019 
varied widely depending on technique. Buoy camera was lowest (n =
64), followed by satellites (n = 174), GA DNR and passive acoustics (n =
266), and the GRNMS R/V was highest (n = 374). 

Fig. 3. Number of boats counted at Gray’s Reef on a daily basis throughout 2019 based on (a) buoy camera, n = 187 observation days, (b) GA DNR patrols, n = 18, 
(c) GRNMS R/V observations, n = 6, (d) passive acoustics, n = 353, and (e) satellite images, n = 29. 
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3.3. Important boat count datasets 

Boat count methods that provided larger samples, or more observa-
tion days, were better able to identify predictor variables that influenced 
visitation. In models fit using single datasets (e.g., buoy camera only), 
the predictors that constituted the best model varied across datasets 
(Table 2). The best model fit to the passive acoustic data, which had the 
largest sample size, identified similar predictors as the best overall 
model fit to all datasets, with day of the week, special day, measured 
water temperature, and wave height as important predictors, but 
selected forecasted maximum seas instead of wave height. The best 
model fit to the buoy camera data, the second largest sample size, also 
included day of the week, special day, and measured water temperature 
but was the only model to include forecasted wind speed and forecasted 
showers as important predictors. The best model fit to the satellite data 
and the best model fit to the GRNMS R/V and GA DNR patrol data, the 
lowest sample sizes, each identified only two important predictors: day 
of the week and wave height, and forecasted maximum seas and air 
temperature, respectively. The estimated relationships between impor-
tant predictors and the number of boats counted at the sanctuary were 
consistent regardless of the dataset modeled. For example, the rela-
tionship to counts was always positive with temperature and was always 
negative with wave height. Counts were always estimated to be highest 
on special days and Saturdays. 

Boat-count methods that provided larger samples also had more 
precise estimates of mean counts. In the best overall model, the co-
efficients of variation of estimated mean counts by boat-count method in 
increasing order were passive acoustics, buoy camera, satellite, GA DNR, 
and GRNMS R/V (CV range was 0.15− 0.45; Table 2) reflecting a 
decrease in precision with decreasing sample size. Also of note, PDE 
values for models based on single datasets varied from just 23 % for the 
model based on GA DNR-GRNMS R/V counts to 80 % for the model 
based only on satellite data. 

The power analysis indicated that count methods that provided 
larger samples provided more statistical power to detect an increase in 
visitation (Fig. 7). Also, for a given sample size, count methods with 
higher mean daily counts provided more statistical power. For example, 
both the buoy camera and passive acoustics were assumed to provide 
365 daily counts per year, but the buoy camera had lower mean counts 
(Fig. 4a) resulting in lower power for the same sample size (Fig. 7). For 
most boat count methods the power analysis suggested that 3–14 years 
of data before and after a 25 % increase in visitation would be needed to 
have a statistical power > 0.8 to detect the change (Fig. 7). A statistical 
power of 0.8 means there is an 80 % chance that one would correctly 
conclude there had been an increase in visitation when visitation had in 
fact increased by 25 %. Many more years of GRNMS R/V and GADNR 
data would be necessary to achieve the same power given the low 
number of daily counts per year. 

4. Discussion 

Quantifying recreational anglers in offshore or remote locations is a 
challenge due to their distance from shore and the costs associated with 
monitoring them. We address this information gap by using five inde-
pendent boat count methods to develop a predictive model of visitor use 

(caption on next column) 

Fig. 4. a-e. Predicted mean number of boats (+/- 95 % CI) based on the best 
model by (a) different count methods, b) day of the week, c) special day, d) 
water temperature, and e) wave height. All variables other than the one on the 
x-axis were held at their mean for numeric (water temperature =23.8 ◦C, wave 
height =0.93 m) or mode for categorical predictors (day of the week = Monday, 
special day = No). Values above bars on (a-c) represent the number of obser-
vations in each category and tick marks on the x axis of (d) and (e) represent 
observed x values. Only predicted boat counts based on the passive acoustics 
dataset are displayed in (b-e) as an example, although all count-methods had 
similar patterns. 
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at a fishing destination 30 km off the coast of Georgia, USA. We iden-
tified a suite of environmental- and calendar based- variables that can 
predict boat counts on any day of the year. We provide guidance to 
practitioners of these methods on expected boat counts in different 
weather conditions and dates, and convey how many years of data 
would be needed to detect a hypothetical change in visitation. 

4.1. Important predictor variables 

There were four important environmental and calendar-based pre-
dictors of boat counts. These were wave height, water temperature, day 
of the week, and special day status. Wave height was an important 
variable related to the physical conditions at the site. The predicted 
number of boats counted was highest on calm days, dropped by ~75 % 
when wave height reached 1 m, and essentially no boats were predicted 
when wave height was 1.5 m or greater assuming average values for all 
other predictors. These values nearly match the predictions for a rec-
reational squid fishery in the Mediterranean (Cabanellas-Reboredo 
et al., 2014) which consists of boats similar in size to those used at 
GRNMS (6− 8 m length) (Morales-Nin et al., 2005; Kendall et al., 2020). 
Large wave heights are not only of concern for the comfort and safety of 
those in small boats, but they can also make it challenging for anglers to 
locate and target some bottom features in places like GRNMS. The small 
ledges and rock features where recreational species congregate can be 
under 1 m in relief (Kendall et al., 2005, 2008, 2009), meaning that if 
wave heights exceed the height of such features, locating them with 
depth sounders can be challenging. Wave height was also simply a better 
predictor in these models than other variables correlated with it, such as 
wind speed and small craft advisories. 

Water temperature was inversely related to the predicted boat counts 
at GRNMS. Highest counts were predicted when temperature was 
warmest (29.9 ◦C) and then gradually declined as temperatures cooled. 
Even during the coldest observed value of 11.8 ◦C, at least some boats 
were predicted although values were extremely low. It is unclear if this 
pattern is due to angler comfort, decreased fishing success in colder 
seasons as migrating fish depart (Parnell et al., 2010; Williams et al., 
2019) or some combination of these and other factors. Season is often 
used as a categorical variable (e.g., summer) during survey design 
and/or analysis in studies of recreational fishing (Parnell et al., 2010; 
Keller et al., 2016; Askey et al., 2018), however in this study we used the 
continuous variable of temperature not only as a proxy for season but in 
a way that encompasses the more gradual environmental change that 

actually occurs. 
Apart from these environmental predictors, calendar-based variables 

were also important. Tournaments, holidays, and the brief red snapper 
fishing season, grouped collectively as special dates in our analysis, are 
all draws for offshore anglers in the area. Predicted number of boats 
counted was nearly twice as high on such days compared to others. 
Many studies on visitor numbers recognize the need to account for 
events such as holidays that occur on weekdays, and lump those dates in 
with weekends (Cabanellas-Reboredo et al., 2014; Keller et al., 2016; 
Flynn et al., 2018; Lynch et al., 2020), whereas others either analyze 
holidays or long weekends as separate strata (Askey et al., 2018; Lynch 
et al., 2020), or discuss specific tournaments and dates during inter-
pretation of their results (Flynn et al., 2018). Our results, wherein reg-
ular weekend days were predicted to have 40 % less visitation than 
special weekend days with similar weather, suggest that such events 
merit analysis in their own separate category in some fisheries. 

Day of the week was also an important predictor. Saturday was 
predicted to have the highest boat counts which clearly fits with visitors 
comprised primarily of recreational fishers occupied on business days. 
Sunday and Friday were also predicted to have increased, and nearly 
equal counts, but that were only 60–66 % of the Saturday high. Visita-
tion decreased on earlier weekdays reaching a minimum on Mondays. 
Many researchers recognize the need to compartmentalize business days 
(Monday through Friday) from non-business days (Saturday and Sun-
day) in studies of recreational fishing given the obvious bias towards 
weekends for recreation (Parnell et al., 2010; van Poorten et al., 2015; 
Keller et al., 2016; Flynn et al., 2018). In multiple ecosystem settings 
including coastal Tasmania (Flynn et al., 2018), remote Canadian lakes 
(Askey et al., 2018), and coastal Vancouver Island (Lancaster et al., 
2017), recreational angler effort on weekend days was 2− 3 times higher 
than weekday effort. This value is consistent with that reported here 
where visitation was predicted to be 3–5 times higher on Saturday and 
~2− 3 times higher on Friday and Sunday, than Monday through 
Thursday. Given the diversity of ecosystems and similarity of these 
patterns, this difference may be typical for many recreational fisheries 
and could be used as a general value in less known systems until 
location-specific estimates of weekday versus weekend visitation can be 
determined. Such a simplifying assumption must be used cautiously 
however, especially in locations known to attract visitors that may be on 
vacation during weekdays. In contrast to other studies, we observed a 
clear peak on Saturday that was distinct from visitation levels on Sun-
day, which were 33 % lower. This could be due to the attendance of 

Fig. 5. Predicted mean number of boats (+/- 95 % confidence interval) across weather/calendar scenarios.  
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Sunday religious services, the study area being located off Georgia, 
which is in the top ten of US states in terms of church attendance 
(Newport, 2015). Also somewhat different from other studies (Lancaster 
et al., 2017; Askey et al., 2018), was that Friday was equally as high as 
Sunday visitation suggesting perhaps that anglers at Gray’s Reef are 
more likely to get an early start on weekend recreation. 

In some cases, business day status does not influence fishing such as 
in the recreational squid fishery in parts of the Mediterranean Sea 
(Cabanellas-Reboredo et al., 2014). The short, 2− 3 hour duration of 
excursions, and evening departure times of the nighttime squid fishery, 
are amenable to trips on any day of the week. Other locations that are 
farther offshore and visited during the daytime such as GRNMS (Kendall 
et al., 2020), would require a larger amount of time just for transit to and 

from the site, and may be incompatible with brief weekday excursions. 
It is important to note that variables that were not selected in the 

model may not be “unimportant” in the sense that anglers do not 
consider them when planning an offshore excursion, they just did not 
meet our definition of statistical importance (i.e., were dropped prior to 
the modeling stage or were not in the model with lowest AICc). Variables 
may be excluded because they are poorly related to the observed boat 
counts. For example, many anglers associate barometer trends with 
suspected fish movement and behaviors (Poveromo, 2012). They 
incorporate that knowledge into decisions on when and how to fish. 
Even though some anglers use such information while planning offshore 
fishing excursions, the direction of daily barometric pressure change as 
measured from the data buoy was simply not a useful predictor of 

Fig. 6. Probability of observing different numbers of boats across weather/calendar scenarios.  
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visitation. In another example, boaters avoid thunderstorms, but the 
influence of that variable was not in the top performing model. 

Other variables were excluded because they were highly correlated 
with another predictor that better explained the boat counts in the 
models. Highly correlated variables essentially represent the same in-
formation in the models and are therefore redundant. For example, the 
intuitively important variable of wind speed was correlated with wave 
height. Because wave height better explained the number of boats, wind 
speed was not defined as an important predictor in the modeling 
framework. If wave height had not been available in the modeling 
process, wind speed would likely have taken its place. Similarly, small 
craft advisories almost certainly discourage many from venturing 
offshore, but were not identified as an important predictor. This was 
likely due to a stronger relationship between boat counts and a different 
predictor, in this case, wave height. 

It is also recognized that a diversity of additional influences may 
affect visitation although it was not possible to include them all here. 
Several other calendar-based predictors were initially considered but 
eliminated. For example, demographics of offshore anglers in coastal 
Georgia often include interest in other outdoor activities such as fishing 
for inshore species and hunting. However, dates for those seasons were 
either too few (e.g., opening day surge in hunting) to have adequate 
sample size, too diffuse (e.g., protracted fishing seasons) to have a 
measurable effect, or their effects were simply too uncertain to incor-
porate into the models. 

4.2. Predicted boat counts and the importance of count method 

The method of counting boats was also identified as an important 
predictor. A detailed breakdown of each technique’s acquisition and 
logistical pros and cons is provided in Kendall et al. (2020) and has been 
addressed for various observation techniques by others (Fraidenberg 
and Bargmann, 1982; McCluskey and Lewison, 2008; Bruno et al., 2011; 
Holdsworth et al., 2018; Hartill et al., 2020). Here, we focus on their 
informative and predictive properties. Bad weather likely affects the 
efficacy of some boat count techniques more than others, however, 
because the pattern of decline in counts is consistent among techniques 
as the weather deteriorates, this was not suspected to be a major source Ta
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Fig. 7. Statistical power to detect (alpha = 0.05) a 25 % increase in visitation 
as a function of the number of years of typical count data for each boat-count 
method. The dotted line denotes a power of 80 % probability of detecting 
the increase. 
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of bias in the results. Techniques reliant upon observers in boats on the 
water had among the highest daily counts but also the lowest sample 
sizes and are biased toward times when boating is safe. The model fit to 
these data alone failed to detect the influence of calendar-based vari-
ables on visitation, probably due to their low sample size on weekdays 
(GADNR) and weekends (GRNMS R/V), whereas the other count 
methods identified the influence of both environmental and 
calendar-based variables. The statistical power of on-water boat count 
methods was relatively low because their annual sample sizes were low, 
especially GRNMS R/V. In our example power analysis for GA DNR, 
more than 20 years with 18 on-water boat counts per year would be 
needed before and after an increase of 25 % in visitor use to have 80 % 
statistical power to detect that change. Many more years would be 
required by GRNMS R/V counts. Without a dramatic increase in annual 
effort and investment in these techniques, they would be unlikely to 
detect change in useful timeframes on their own. 

In contrast, passive acoustic monitoring provided an automated data 
stream, the highest number of observed counts, and broadest coverage 
with respect to environmental conditions and calendar dates throughout 
almost the entire year. The higher number of samples resulted in the 
highest statistical power such that only 3 years of data would be needed 
before and after an increase of 25 % in visitor use to have 80 % statistical 
power to detect that change. However, the passive acoustic counts were 
spatially biased as a result of the narrow and variable detection range 
surrounding it (~1 to 4 km depending on ambient noise). Similar to the 
acoustics, the buoy camera can potentially provide continuous moni-
toring throughout the year. However, the buoy camera had the lowest 
actual counts, possibly due to its low resolution and limited effective 
distance (~2 km depending on visibility) around the data buoy. This 
resulted in lower statistical power such that 6 years of data would be 
needed before and after an increase of 25 % in visitor use to have 80 % 
statistical power to detect that change. 

Based on satellite counts, 14 years of data would be needed before 
and after an increase of 25 % in visitor use to have 80 % statistical power 
to detect that change. It is important to note that all these estimates of 
statistical power were calculated under several simplifying assumptions. 
For example, the simulated data assumed the same environmental 
conditions every year; those of 2019. Also, a simple model was used to 
test for a change, whereas a more complex model that accounted for the 
effects of predictors could provide different statistical power. Never-
theless, the example demonstrated here likely provided reasonable es-
timates of the relative differences among count methods and the number 
of years of data that would be needed from each of them. This is an 
important consideration in studies seeking to identify which counting 
techniques provide the needed information on timescales relevant to 
management. For example, MPA and fishery management plans are 
often revised on a 5− 10 year cycle (NOAA, 2014; Levin et al., 2018). 
Adaptive management requires that robust information be collected 
over similar intervals. 

Although our study indicates that weekend days with favorable 
environmental conditions have the highest expected counts of boats, it is 
also useful to know how many boats might be encountered on other days 
of the year to develop a more complete understanding of the patterns of 
visitation. The weather and calendar day scenarios presented here can 
be used to set expectations for how many boats may be seen with each 
technique. The scenarios can be easily referenced by data collectors to 
determine the probabilities of counting different numbers of boats under 
particular dates and conditions to achieve a target number of boat en-
counters (e.g., law enforcement). Regardless of the method used, the 
actual number of boats counted on a given day can vary substantially, 
even on the same day of the week under the same environmental con-
ditions. Furthermore, it is also useful to recognize that there is usually a 
considerable probability of not counting any boats, especially on 
weekdays when weather conditions are sub-optimal. 

Unfortunately, none of the boat count methods evaluated here pro-
vided unbiased estimates of the actual number of boats that visited 

GRNMS. The estimated annual number of boats based on daily condi-
tions and calendar variables in 2019 varied from 64 (buoy camera) to 
374 (GRNMS R/V). Some methods provided better temporal coverage 
within a day whereas other methods provided better spatial coverage of 
the area. For example, the passive acoustics continuously recorded boat 
noise which provided good temporal monitoring, but these counts only 
covered a portion of GRNMS. Other techniques provide more compre-
hensive spatial coverage but suffer from limited temporal coverage. For 
example, the satellite images used here could view the entire area, but 
only provided a snapshot of activity at one time of day every few days. It 
may be possible to leverage the empirical relationships among coinci-
dent observations from multiple boat count datasets to extrapolate to a 
more complete temporal and spatial sampling frame (Bruno et al., 2011; 
van Poorten et al., 2015; Keller et al., 2016; Holdsworth et al., 2018). For 
example, establishing the relationship between the acoustic counts 
(continuous but limited spatial coverage) and satellite counts (entire 
sanctuary but snapshot in time) may enable reciprocal use of the 
strengths of one dataset to account for the biases of another. 

Despite the differences among the boat count datasets, there was 
consistency in the variables identified to have an influence on them. 
Most counting techniques identified at least one environmental and 
calendar based variable. Having data from multiple independent count 
methods provides more confidence in conclusions about important 
predictor variables (Parnell et al., 2010; Sunger et al., 2012; Hartill 
et al., 2016; Holdsworth et al., 2018; Lynch et al., 2020). Furthermore, 
multiple boat count datasets used in concert were more useful than any 
one individual dataset on its own due to larger sample size and greater 
statistical power. 

5. Conclusion 

The approach presented here for understanding recreational visita-
tion of offshore or remote areas can be adopted elsewhere. The process 
involved using multiple boat count datasets, identifying an initial set of 
predictor variables, reducing that set through preliminary analysis and 
model selection, fitting a model to the boat count datasets as a function 
of the predictor variables, identifying a small set of realistic scenarios 
during which boat counts could be conducted, and using the fitted model 
to determine the number of samples that each technique would require 
to detect a specific amount of change in visitation. 

Predictors representing the general categories of weather conditions, 
season, day of the week, and special date status are all important types of 
information to consider for offshore visitation that have been identified 
in this and other studies (Fraidenberg and Bargmann, 1982; Parnell 
et al., 2010; Cabanellas-Reboredo et al., 2014; Keller et al., 2016; Lan-
caster et al., 2017; Lynch et al., 2020). Different boat count datasets will 
relate best to specific predictors that represent these broad general 
categories of information (air and water temperature represent season, 
wave height and wind speed represent boating safety and comfort). 

The estimated counts of boats visiting GRNMS on a given day varied 
widely depending on the count method, primarily because of differences 
in the temporal and spatial extent of sampling for each method. Count 
methods also varied greatly in terms of sample size with some methods 
providing many more daily counts covering a wider range of conditions 
and dates than others. Methods that provided fewer daily counts from a 
limited range of conditions and dates were less informative about the 
variables influencing visitation. Also, methods with smaller sample sizes 
or fewer observations of boats had less statistical power to detect 
changes in visitation. A full assessment of the usefulness of different 
count methods must also consider the cost of data collection (e.g., 
Sunger et al., 2012), a topic beyond our scope. The most valuable 
methods would be those that collect more data for less cost. Combining 
the scenarios and power analysis explored here with other forms of so-
cial science data such as questionnaires or creel surveys, can be used to 
develop economic impact models, fisheries mortality estimates, spatial 
management tools (e.g., MPAs), and other forms of actionable 
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information on the effects of visitor use (Parnell et al., 2010; Hartill 
et al., 2016; Bova et al., 2018; Burns et al., 2020). 
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Appendix A. List of all predictor variables that were initially compiled. Many were eliminated prior to model fitting by examining 
correlations among variables, and eliminating one from pairs of closely related predictors (e.g. wind speed at 5:50 AM vs 10:50 AM). 
Variables were considered correlated if Pearson’s r was ≥ 0.6. Check marks in the modelled column denote variables that went into the 
model fitting process but do not necessarily mean that the predictor was used in the best model  

Predictor Source Modelled Correlated with: 

Forecasted maximum wave height 
(AM) 

Weather Service 
Forecasts 

✔ Measured wave height (5:50 AM & 10:50 AM), measured wind speed (5:50 AM & 10:50 AM), small craft 
advisory (AM & PM), forecasted max wind speed (AM & PM), forecasted max wave height (PM) 

Forecasted maximum wind speed 
(AM) 

Weather Service 
Forecasts 

✔ Measured wave height (5:50 AM & 10:50 AM), measured wind speed (5:50 AM & 10:50 AM), small craft 
advisory (AM & PM), forecasted max wind speed (PM), forecasted max wave height (AM & PM) 

Forecasted small craft advisories 
(AM) 

Weather Service 
Forecasts 

✔ Forecasted max wave height (AM & PM), forecasted max wind speed (AM & PM), forecasted small craft 
advisory (PM), measured wave height (5:50 AM & 10:50 AM) 

Forecasted showers (AM) Weather Service 
Forecasts 

✔ Forecasted showers (PM), forecasted thunderstorms (AM & PM) 

Forecasted rain (AM) Weather Service 
Forecasts  

none 

Forecasted thunderstorms (AM) Weather Service 
Forecasts 

✔ Forecasted thunderstorms (PM), forecasted showers (AM & PM) 

Forecasted maximum wave height 
(PM) 

Weather Service 
Forecasts  

Measured wave height (5:50 AM & 10:50 AM), measured wind speed (5:50 AM & 10:50 AM), small craft 
advisory (AM & PM), forecasted max wind speed (AM & PM), forecasted max wave height (AM) 

Forecasted maximum wind speed 
(PM) 

Weather Service 
Forecasts  

Measured wave height (5:50 AM & 10:50 AM), measured wind speed (5:50 AM & 10:50 AM), small craft 
advisory (AM & PM), forecasted max wind speed (AM), forecasted max wave height (AM & PM) 

Forecasted small craft advisories 
(PM) 

Weather Service 
Forecasts  

Forecasted max wave height (AM & PM), forecasted max wind speed (AM & PM), forecasted small craft 
advisory (AM), measured wave height (5:50 AM & 10:50 AM) 

Forecasted showers (PM) Weather Service 
Forecasts  

Forecasted showers (AM), forecasted thunderstorms (AM & PM) 

Forecasted rain (PM) Weather Service 
Forecasts  

none 

Forecasted thunderstorms (PM) Weather Service 
Forecasts  

Forecasted thunderstorms (PM), forecasted showers (AM & PM) 

Measured wind speed (5:50 AM) National Data 
Buoy Center  

Measured wave height (5:50 AM & 10:50 AM), measured wind speed (10:50 AM), forecasted max wind 
speed (AM & PM), forecasted max wave height (AM & PM) 

Measured wave height (5:50 AM) National Data 
Buoy Center  

Measured wave height (10:50 AM), measured wind speed (5:50 AM & 10:50 AM), small craft advisory (AM 
& PM), forecasted max wind speed (AM & PM), forecasted max wave height (AM & PM) 

Measured water temperature (5:50 
AM) 

National Data 
Buoy Center  

Measured air temperature (5:50 AM & 10:50 AM), measured water temperature (10:50 AM) 

Measured dominant wave period 
(5:50 AM) 

National Data 
Buoy Center  

Measured wave period (10:50 AM) 

Measured pressure change (5:50 
AM) 

National Data 
Buoy Center  

none 

Measured air temperature (5:50 
AM) 

National Data 
Buoy Center  

Measured water temperature (5:50 AM & 10:50 AM), measured air temperature (10:50 AM) 

Measured wind speed (10:50 AM) National Data 
Buoy Center 

✔ Measured wave height (5:50 AM & 10:50 AM), measured wind speed (5:50 AM), forecasted max wind 
speed (AM & PM), forecasted max wave height (AM & PM) 

Measured wave height (10:50 AM) National Data 
Buoy Center 

✔ Measured wave height (5:50 AM), measured wind speed (5:50 AM & 10:50 AM), small craft advisory (AM 
& PM), forecasted max wind speed (AM & PM), forecasted max wave height (AM & PM) 

Measured water temperature (10:50 
AM) 

National Data 
Buoy Center 

✔ Measured air temperature (5:50 AM & 10:50 AM), measured water temperature (5:50 AM) 

Measured dominant wave period 
(10:50 AM) 

National Data 
Buoy Center  

Measured wave period (5:50 AM) 

Measured pressure change (10:50 
AM) 

National Data 
Buoy Center  

none 

✔ Measured water temperature (5:50 AM & 10:50 AM), measured air temperature (5:50 AM) 

(continued on next page) 
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(continued ) 

Predictor Source Modelled Correlated with: 

Measured air temperature (10:50 
AM) 

National Data 
Buoy Center 

Special dates (holidays, 
tournaments, fishing seasons) 

Calendar ✔ none 

Day of the week Calendar ✔ none 
Count method  ✔ none  
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